
Newt, the third prototype

R. S. Doiel, rsdoiel@caltech.edu

Caltech Library, Digital Library Development

mailto:rsdoiel@caltech.edu




What is Newt?

▶ A rapid application develop tool
▶ for applications that curate metadata

▶ Audience: Libraries, Archives, Galleries and Museums



Findings from Prototype 2:

Is Newt and “off the shelf” software enough to create metadata curation
applications?

Short answer is yes. Longer answer is more nuanced.



Findings from Prototype 2:

Is Newt and “off the shelf” software enough to create metadata curation
applications?

1. Newt’s YAML file can grow very large for applications with many data models
2. Model vetting and validation should happen early in the data pipeline, ideally as a

generated program and browser side
3. Postgres+PostgREST is a powerful combination but it’d be nice to have something

simpler
4. Managing the YAML file can be done conversationally



Questions raised by Prototype 2:

▶ Where do I focus my simplification efforts?
▶ How do I ensure that large YAML files remaining human manageable?
▶ Mustache template language is a little too simple, what should replace it?



High level Concepts (remain the same)

▶ describe the application you want
▶ generate the application you described
▶ running the application using a service oriented architecture



Implementation Concepts (remaining the same)

▶ JSON data sources
▶ data modeled in YAML
▶ routing requests through data pipelines



Themes (remains the same)

▶ Pick Simple = (No coding) + (Less coding)
▶ Compose applications using data pipelines
▶ Avoid inventing new things



Goal of Prototype 3: Questions to explore

1. What should the default JSON data source be? (dataset+datasetd or
Postgres+PostgREST)

2. Is generated TypeScript middleware the right fit? (e.g. validation service, template
engine)

3. Is Handlebars a good fit for managing data views and rendering HTML?
4. Should the template engine be generic or a generated TypeScript program?



Goal of Prototype 3: Extra credit question

▶ Can I leverage WASI+WASM to make useful Python libraries available to Deno and
browser?



Changes from last prototype

▶ Removed some Go cli (e.g. ws, mustache, newtmustache)
▶ Generating collection and YAML for dataset+datasetd
▶ Generating Handlebars templates
▶ Generating TypeScript validator as middleware run via Deno
▶ Generating Handlebars as template engine as middleware run via Deno
▶ Using Deno to generate JS/ES6 for web browser



Off the shelf (no coding)

▶ JSON Data Source
▶ Dataset + datasetd
▶ Postgres + PostgREST

▶ TypeScript middleware run via Deno
▶ Newt Router, ties it all together

https://caltechlibrary.github.io/datasetd
https://postgresql.org
https://postgrest.org


Other Off the self

▶ Solr
▶ OpenSearch

https://solr.apache.org
https://opensearch.org


Assemble app from YAML (less coding)

▶ The application you want is described in YAML
▶ Create the initial Newt YAML through a conversational TUI
▶ Newt generates the code you need
▶ Customize by editing the generated code and managing your pipelines



How are data models described?

▶ A model is a set of HTML form input types
▶ Expressed using GitHub YAML Issue Template Syntax
▶ Model describes HTML and implies SQL



How do I think things will work?

1. Interactively generate our application’s YAML file
2. Interactively define data models
3. Generate our application code
4. Run newt generate ... for primary data source
5. Run newt run ... to run the application



Steps one and two are interactive

newt init app.yaml
newt model app.yaml



Step three, generate our code

newt generate app.yaml
Create a dataset collection and datasetd YAML file Render Handlebars templates
Wires up routes Adds tasks to deno.json



Step four, setup primary JSON data source

Dataset collection
Collection generation is done “auto magically” by newt generate app.yaml
datasetd YAML file gets generated so Newt can run the datasetd JSON API



Step five, run your application and test

newt run app.yaml
Point your web browser at http://localhost:8010 to test



Can I run a demo?

Not yet, hopefully in early December 2024.



Third prototype Status

▶ A work in progress (continuing through 2024)
▶ Working prototype target date June 2025
▶ Using internal applications as test bed



How much is built?

⊠ Newt developer tool
⊠ Router is implemented and working
⊠ Mustache template engine is working (removed)
□ Generator development (paused, back to design stage)
□ Modeler (design stage)
□ Handlebars template engine (to be generated by Newt)



Insights from prototypes 1 & 2

▶ “Off the shelf” is simpler
▶ Lots of typing discourages use



Insights from prototypes 1 & 2

▶ SQL turns people off, use a code generator
▶ Hand typing templates is a turn off, use a code generator
▶ Large YAML structures benefit from code generation
▶ Automatic “wiring up” of routes and templates very helpful



What’s next to wrap up prototype 3?

▶ Retarget, Debug and improve the code generator
▶ Continue to design and implement a data modeler
▶ Extend Generator to include generating validator and template engine middleware



Out of the box

▶ Newt (development tool)
▶ Newt Router



Unanswered Questions

▶ What is the minimum knowledge required to use Newt effectively?
▶ Who is in the target audience?



Someday, maybe ideas

▶ A visual programming approach could be easier than editing YAML files
▶ Direct SQLite 3 database support or integration
▶ A S3 protocol web service implementing object storage using OCFL
▶ Web components for library, archive and museum metadata types
▶ Extend Newt through WASI+WASM run time modules and expose to use in

pipelines
▶ WASI+WASM might be useful to conserve ports taken up in the data pipelines



Related resources

▶ Newt https://github.com/caltechlibrary/newt
▶ Dataset + datasetd https://github.com/caltechlibrary/dataset
▶ Handlebars programming languages support

https://github.com/caltechlibrary/newt
https://github.com/caltechlibrary/dataset
https://handlebarsjs.com


Thank you!

▶ This Presentation
▶ pdf: https://caltechlibrary.github.io/newt/presentation3/newt-p3.pdf
▶ pptx: https://caltechlibrary.github.io/newt/presentation3/newt-p3.pptx

▶ Newt Documentation https://caltechlibrary.github.io/newt
▶ Source Code: https://github.com/caltechlibrary/newt
▶ Email: rsdoiel@caltech.edu

https://caltechlibrary.github.io/newt/presentation3/newt-p3.pdf
https://caltechlibrary.github.io/newt/presentation3/newt-p3.pptx
https://caltechlibrary.github.io/newt
https://github.com/caltechlibrary/newt

