Loops
Overview
Teaching: 40 min
Exercises: 10 minQuestions
How can I perform the same actions on many different files?
Objectives
Write a loop that applies one or more commands separately to each file in a set of files.
Trace the values taken on by a loop variable during execution of the loop.
Explain the difference between a variable’s name and its value.
Explain why spaces and some punctuation characters shouldn’t be used in file names.
Demonstrate how to see what commands have recently been executed.
Re-run recently executed commands without retyping them.
Loops are key to productivity improvements through automation as they allow us to execute
commands repetitively. Similar to wildcards and tab completion, using loops also reduces the
amount of typing (and typing mistakes).
Suppose we have several hundred genome data files named basilisk.dat
, unicorn.dat
, and so on.
In this example,
we’ll use the creatures
directory which only has two example files,
but the principles can be applied to many many more files at once.
We would like to modify these files, but also save a version of the original files, naming the copies
original-basilisk.dat
and original-unicorn.dat
.
We can’t use:
$ cp *.dat original-*.dat
because that would expand to:
$ cp basilisk.dat unicorn.dat original-*.dat
This wouldn’t back up our files, instead we get an error:
cp: target `original-*.dat' is not a directory
This problem arises when cp
receives more than two inputs. When this happens, it
expects the last input to be a directory where it can copy all the files it was passed.
Since there is no directory named original-*.dat
in the creatures
directory we get an
error.
Instead, we can use a loop
to do some operation once for each thing in a list.
Here’s a simple example that displays the first three lines of each file in
turn. It’s easiest to write this as a script headers.sh
:
$ for filename in basilisk.dat unicorn.dat
> do
> head -n 3 $filename # Indentation within the loop aids legibility
> done
COMMON NAME: basilisk
CLASSIFICATION: basiliscus vulgaris
UPDATED: 1745-05-02
COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24
Indentation of code within a for loop
Note that it is common practice to indent the line(s) of code within a for loop. The only purpose is to make the code easier to read – it is not required for the loop to run.
When the shell sees the keyword for
,
it knows to repeat a command (or group of commands) once for each item in a list.
Each time the loop runs (called an iteration), an item in the list is assigned in sequence to
the variable, and the commands inside the loop are executed, before moving on to
the next item in the list.
Inside the loop,
we call for the variable’s value by putting $
in front of it.
The $
tells the shell interpreter to treat
the variable as a variable name and substitute its value in its place,
rather than treat it as text or an external command.
In this example, the list is two filenames: basilisk.dat
and unicorn.dat
.
Each time the loop iterates, it will assign a file name to the variable filename
and run the head
command.
The first time through the loop,
$filename
is basilisk.dat
.
The interpreter runs the command head
on basilisk.dat
,
and the prints the
first three lines of basilisk.dat
.
For the second iteration, $filename
becomes
unicorn.dat
. This time, the shell runs head
on unicorn.dat
and prints the first three lines of unicorn.dat
.
Since the list was only two items, the shell exits the for
loop.
When using variables it is also
possible to put the names into curly braces to clearly delimit the variable
name: $filename
is equivalent to ${filename}
, but is different from
${file}name
. You may find this notation in other people’s programs.
Variables in Loops
This exercise refers to the
data-shell/molecules
directory.ls
gives the following output:cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
What is the output of the following code?
for datafile in *.pdb do ls *.pdb done
Now, what is the output of the following code?
for datafile in *.pdb do ls $datafile done
Why do these two loops give different outputs?
Solution
The first code block gives the same output on each iteration through the loop. Bash expands the wildcard
*.pdb
within the loop body (as well as before the loop starts) to match all files ending in.pdb
and then lists them usingls
. The expanded loop would look like this:for datafile in cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb do ls cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb done
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
The second code block lists a different file on each loop iteration. The value of the
datafile
variable is evaluated using$datafile
, and then listed usingls
.cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
Returning to our example in the data-shell/creatures
directory,
we have called the variable in this loop filename
in order to make its purpose clearer to human readers.
The shell itself doesn’t care what the variable is called;
if we wrote this loop as:
for x in basilisk.dat unicorn.dat
do
head -n 3 $x
done
or:
for temperature in basilisk.dat unicorn.dat
do
head -n 3 $temperature
done
it would work exactly the same way.
Don’t do this.
Programs are only useful if people can understand them,
so meaningless names (like x
) or misleading names (like temperature
)
increase the odds that the program won’t do what its readers think it does.
Going back to our original file copying problem, we can solve it using this loop:
for filename in *.dat
do
cp $filename original-$filename
done
This loop runs the cp
command once for each filename.
The first time,
when $filename
expands to basilisk.dat
,
the shell executes:
cp basilisk.dat original-basilisk.dat
The second time, the command is:
cp unicorn.dat original-unicorn.dat
Since the cp
command does not normally produce any output, it’s hard to check
that the loop is doing the correct thing. By prefixing the command with echo
it is possible to see each command as it would be executed. The following diagram
shows what happens when the modified script is executed, and demonstrates how the
judicious use of echo
is a good debugging technique.
Challenge
Write a loop that prints out each file name followed by lines 11-15.
for filename in *.dat
do
echo $filename
head -n 15 $filename | tail -n 5
done
The shell starts by expanding *.dat
to create the list of files it will process.
The loop body
then executes two commands for each of those files.
The first, echo
, just prints its command-line arguments to standard output.
For example:
$ echo hello there
prints:
hello there
In this case,
since the shell expands $filename
to be the name of a file,
echo $filename
just prints the name of the file.
Note that we can’t write this as:
for filename in *.dat
do
$filename
head -n 15 $filename | tail -n 5
done
because then the first time through the loop,
when $filename
expanded to basilisk.dat
, the shell would try to run basilisk.dat
as a program.
Finally,
the head
and tail
combination selects lines 11-15
from whatever file is being processed
(assuming the file has at least 15 lines).
Spaces in Names
Whitespace is used to separate the elements on the list that we are going to loop over. If on the list we have elements with whitespace we need to quote those elements and our variable when using it. Suppose our data files are named:
red dragon.dat purple unicorn.dat
We need to use
for filename in "red dragon.dat" "purple unicorn.dat" do head -n 100 "$filename" | tail -n 3 done
It is simpler just to avoid using whitespaces (or other special characters) in filenames.
The files above don’t exist, so if we run the above code, the
head
command will be unable to find them, however the error message returned will show the name of the files it is expecting:head: cannot open ‘red dragon.dat’ for reading: No such file or directory head: cannot open ‘purple unicorn.dat’ for reading: No such file or directory
Try removing the quotes around
$filename
in the loop above to see the effect of the quote marks on whitespace. Note that we get a result from the loop command for unicorn.dat when we run this code in thecreatures
directory:head: cannot open ‘red’ for reading: No such file or directory head: cannot open ‘dragon.dat’ for reading: No such file or directory head: cannot open ‘purple’ for reading: No such file or directory CGGTACCGAA AAGGGTCGCG CAAGTGTTCC
Nelle’s Pipeline: Processing Files
Nelle is now ready to process her data files using goostats
— a shell script written by her supervisor.
This calculates some statistics from a protein sample file, and takes two arguments:
- an input file (containing the raw data)
- an output file (to store the calculated statistics)
Since she’s still learning how to use the shell, she decides to build up the required commands in stages. Her first step is to make sure that she can select the right input files — remember, these are ones whose names end in ‘A’ or ‘B’, rather than ‘Z’. Starting from her home directory, Nelle types:
- Write all as scripts
$ cd north-pacific-gyre/2012-07-03
$ for datafile in NENE*[AB].txt
> do
> echo $datafile
> done
NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...
NENE02043A.txt
NENE02043B.txt
Her next step is to decide
what to call the files that the goostats
analysis program will create.
Prefixing each input file’s name with “stats” seems simple,
so she modifies her loop to do that:
$ for datafile in NENE*[AB].txt
> do
> echo $datafile stats-$datafile
> done
NENE01729A.txt stats-NENE01729A.txt
NENE01729B.txt stats-NENE01729B.txt
NENE01736A.txt stats-NENE01736A.txt
...
NENE02043A.txt stats-NENE02043A.txt
NENE02043B.txt stats-NENE02043B.txt
She hasn’t actually run goostats
yet,
but now she’s sure she can select the right files and generate the right output filenames.
Typing in commands over and over again is becoming tedious, though, and Nelle is worried about making mistakes, so instead of re-entering her loop, she presses the up arrow. In response, the shell redisplays the whole loop on one line (using semi-colons to separate the pieces):
$ for datafile in NENE*[AB].txt; do echo $datafile stats-$datafile; done
Using the left arrow key,
Nelle backs up and changes the command echo
to bash goostats
:
$ for datafile in NENE*[AB].txt; do bash goostats $datafile stats-$datafile; done
When she presses Enter,
the shell runs the modified command.
However, nothing appears to happen — there is no output.
After a moment, Nelle realizes that since her script doesn’t print anything to the screen any longer,
she has no idea whether it is running, much less how quickly.
She kills the running command by typing Ctrl-C
,
uses up-arrow to repeat the command,
and edits it to read:
$ for datafile in NENE*[AB].txt; do echo $datafile; bash goostats $datafile stats-$datafile; done
Beginning and End
We can move to the beginning of a line in the shell by typing
Ctrl-a
and to the end usingCtrl-e
.
When she runs her program now, it produces one line of output every five seconds or so:
NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...
1518 times 5 seconds,
divided by 60,
tells her that her script will take about two hours to run.
As a final check,
she opens another terminal window,
goes into north-pacific-gyre/2012-07-03
,
and uses cat stats-NENE01729B.txt
to examine one of the output files.
It looks good,
so she decides to get some coffee and catch up on her reading.
If she wanted to be more adventurous,
she could modify her script to check for command-line arguments,
and use NENE*[AB].txt
if none were provided.
Of course, this introduces another tradeoff between flexibility and complexity.
Key Points
A
for
loop repeats commands once for every thing in a list.Every
for
loop needs a variable to refer to the thing it is currently operating on.Use
$name
to expand a variable (i.e., get its value).${name}
can also be used.Do not use spaces, quotes, or wildcard characters such as ‘*’ or ‘?’ in filenames, as it complicates variable expansion.
Give files consistent names that are easy to match with wildcard patterns to make it easy to select them for looping.
Use the up-arrow key to scroll up through previous commands to edit and repeat them.
Use
Ctrl-R
to search through the previously entered commands.Use
history
to display recent commands, and!number
to repeat a command by number.