Loops

Overview

Teaching: 40 min
Exercises: 10 min
Questions
  • How can I perform the same actions on many different files?

Objectives
  • Write a loop that applies one or more commands separately to each file in a set of files.

  • Trace the values taken on by a loop variable during execution of the loop.

  • Explain the difference between a variable’s name and its value.

  • Explain why spaces and some punctuation characters shouldn’t be used in file names.

  • Demonstrate how to see what commands have recently been executed.

  • Re-run recently executed commands without retyping them.

Loops are key to productivity improvements through automation as they allow us to execute commands repetitively. Similar to wildcards and tab completion, using loops also reduces the amount of typing (and typing mistakes). Suppose we have several hundred genome data files named basilisk.dat, unicorn.dat, and so on. In this example, we’ll use the creatures directory which only has two example files, but the principles can be applied to many many more files at once. We would like to modify these files, but also save a version of the original files, naming the copies original-basilisk.dat and original-unicorn.dat. We can’t use:

$ cp *.dat original-*.dat

because that would expand to:

$ cp basilisk.dat unicorn.dat original-*.dat

This wouldn’t back up our files, instead we get an error:

cp: target `original-*.dat' is not a directory

This problem arises when cp receives more than two inputs. When this happens, it expects the last input to be a directory where it can copy all the files it was passed. Since there is no directory named original-*.dat in the creatures directory we get an error.

Instead, we can use a loop to do some operation once for each thing in a list. Here’s a simple example that displays the first three lines of each file in turn. It’s easiest to write this as a script headers.sh:

$ for filename in basilisk.dat unicorn.dat
> do
>    head -n 3 $filename	# Indentation within the loop aids legibility
> done
COMMON NAME: basilisk
CLASSIFICATION: basiliscus vulgaris
UPDATED: 1745-05-02
COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24

Indentation of code within a for loop

Note that it is common practice to indent the line(s) of code within a for loop. The only purpose is to make the code easier to read – it is not required for the loop to run.

When the shell sees the keyword for, it knows to repeat a command (or group of commands) once for each item in a list. Each time the loop runs (called an iteration), an item in the list is assigned in sequence to the variable, and the commands inside the loop are executed, before moving on to the next item in the list. Inside the loop, we call for the variable’s value by putting $ in front of it. The $ tells the shell interpreter to treat the variable as a variable name and substitute its value in its place, rather than treat it as text or an external command.

In this example, the list is two filenames: basilisk.dat and unicorn.dat. Each time the loop iterates, it will assign a file name to the variable filename and run the head command. The first time through the loop, $filename is basilisk.dat. The interpreter runs the command head on basilisk.dat, and the prints the first three lines of basilisk.dat. For the second iteration, $filename becomes unicorn.dat. This time, the shell runs head on unicorn.dat and prints the first three lines of unicorn.dat. Since the list was only two items, the shell exits the for loop.

When using variables it is also possible to put the names into curly braces to clearly delimit the variable name: $filename is equivalent to ${filename}, but is different from ${file}name. You may find this notation in other people’s programs.

Variables in Loops

This exercise refers to the data-shell/molecules directory. ls gives the following output:

cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb

What is the output of the following code?

for datafile in *.pdb
do
    ls *.pdb
done

Now, what is the output of the following code?

for datafile in *.pdb
do
	ls $datafile
done

Why do these two loops give different outputs?

Solution

The first code block gives the same output on each iteration through the loop. Bash expands the wildcard *.pdb within the loop body (as well as before the loop starts) to match all files ending in .pdb and then lists them using ls. The expanded loop would look like this:

for datafile in cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
do
	ls cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
done
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb
cubane.pdb  ethane.pdb  methane.pdb  octane.pdb  pentane.pdb  propane.pdb

The second code block lists a different file on each loop iteration. The value of the datafile variable is evaluated using $datafile, and then listed using ls.

cubane.pdb
ethane.pdb
methane.pdb
octane.pdb
pentane.pdb
propane.pdb

Returning to our example in the data-shell/creatures directory, we have called the variable in this loop filename in order to make its purpose clearer to human readers. The shell itself doesn’t care what the variable is called; if we wrote this loop as:

for x in basilisk.dat unicorn.dat
do
    head -n 3 $x
done

or:

for temperature in basilisk.dat unicorn.dat
do
    head -n 3 $temperature
done

it would work exactly the same way. Don’t do this. Programs are only useful if people can understand them, so meaningless names (like x) or misleading names (like temperature) increase the odds that the program won’t do what its readers think it does.

Going back to our original file copying problem, we can solve it using this loop:

for filename in *.dat
do
    cp $filename original-$filename
done

This loop runs the cp command once for each filename. The first time, when $filename expands to basilisk.dat, the shell executes:

cp basilisk.dat original-basilisk.dat

The second time, the command is:

cp unicorn.dat original-unicorn.dat

Since the cp command does not normally produce any output, it’s hard to check that the loop is doing the correct thing. By prefixing the command with echo it is possible to see each command as it would be executed. The following diagram shows what happens when the modified script is executed, and demonstrates how the judicious use of echo is a good debugging technique.

Challenge

Write a loop that prints out each file name followed by lines 11-15.

for filename in *.dat
do
    echo $filename
    head -n 15 $filename | tail -n 5
done

The shell starts by expanding *.dat to create the list of files it will process. The loop body then executes two commands for each of those files. The first, echo, just prints its command-line arguments to standard output. For example:

$ echo hello there

prints:

hello there

In this case, since the shell expands $filename to be the name of a file, echo $filename just prints the name of the file. Note that we can’t write this as:

for filename in *.dat
do
    $filename
    head -n 15 $filename | tail -n 5
done

because then the first time through the loop, when $filename expanded to basilisk.dat, the shell would try to run basilisk.dat as a program. Finally, the head and tail combination selects lines 11-15 from whatever file is being processed (assuming the file has at least 15 lines).

Spaces in Names

Whitespace is used to separate the elements on the list that we are going to loop over. If on the list we have elements with whitespace we need to quote those elements and our variable when using it. Suppose our data files are named:

red dragon.dat
purple unicorn.dat

We need to use

for filename in "red dragon.dat" "purple unicorn.dat"
do
    head -n 100 "$filename" | tail -n 3
done

It is simpler just to avoid using whitespaces (or other special characters) in filenames.

The files above don’t exist, so if we run the above code, the head command will be unable to find them, however the error message returned will show the name of the files it is expecting:

head: cannot open ‘red dragon.dat’ for reading: No such file or directory
head: cannot open ‘purple unicorn.dat’ for reading: No such file or directory

Try removing the quotes around $filename in the loop above to see the effect of the quote marks on whitespace. Note that we get a result from the loop command for unicorn.dat when we run this code in the creatures directory:

head: cannot open ‘red’ for reading: No such file or directory
head: cannot open ‘dragon.dat’ for reading: No such file or directory
head: cannot open ‘purple’ for reading: No such file or directory
CGGTACCGAA
AAGGGTCGCG
CAAGTGTTCC

Nelle’s Pipeline: Processing Files

Nelle is now ready to process her data files using goostats — a shell script written by her supervisor. This calculates some statistics from a protein sample file, and takes two arguments:

  1. an input file (containing the raw data)
  2. an output file (to store the calculated statistics)

Since she’s still learning how to use the shell, she decides to build up the required commands in stages. Her first step is to make sure that she can select the right input files — remember, these are ones whose names end in ‘A’ or ‘B’, rather than ‘Z’. Starting from her home directory, Nelle types:

$ cd north-pacific-gyre/2012-07-03
$ for datafile in NENE*[AB].txt
> do
>     echo $datafile
> done
NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...
NENE02043A.txt
NENE02043B.txt

Her next step is to decide what to call the files that the goostats analysis program will create. Prefixing each input file’s name with “stats” seems simple, so she modifies her loop to do that:

$ for datafile in NENE*[AB].txt
> do
>     echo $datafile stats-$datafile
> done
NENE01729A.txt stats-NENE01729A.txt
NENE01729B.txt stats-NENE01729B.txt
NENE01736A.txt stats-NENE01736A.txt
...
NENE02043A.txt stats-NENE02043A.txt
NENE02043B.txt stats-NENE02043B.txt

She hasn’t actually run goostats yet, but now she’s sure she can select the right files and generate the right output filenames.

Typing in commands over and over again is becoming tedious, though, and Nelle is worried about making mistakes, so instead of re-entering her loop, she presses the up arrow. In response, the shell redisplays the whole loop on one line (using semi-colons to separate the pieces):

$ for datafile in NENE*[AB].txt; do echo $datafile stats-$datafile; done

Using the left arrow key, Nelle backs up and changes the command echo to bash goostats:

$ for datafile in NENE*[AB].txt; do bash goostats $datafile stats-$datafile; done

When she presses Enter, the shell runs the modified command. However, nothing appears to happen — there is no output. After a moment, Nelle realizes that since her script doesn’t print anything to the screen any longer, she has no idea whether it is running, much less how quickly. She kills the running command by typing Ctrl-C, uses up-arrow to repeat the command, and edits it to read:

$ for datafile in NENE*[AB].txt; do echo $datafile; bash goostats $datafile stats-$datafile; done

Beginning and End

We can move to the beginning of a line in the shell by typing Ctrl-a and to the end using Ctrl-e.

When she runs her program now, it produces one line of output every five seconds or so:

NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...

1518 times 5 seconds, divided by 60, tells her that her script will take about two hours to run. As a final check, she opens another terminal window, goes into north-pacific-gyre/2012-07-03, and uses cat stats-NENE01729B.txt to examine one of the output files. It looks good, so she decides to get some coffee and catch up on her reading.

If she wanted to be more adventurous, she could modify her script to check for command-line arguments, and use NENE*[AB].txt if none were provided. Of course, this introduces another tradeoff between flexibility and complexity.

Key Points

  • A for loop repeats commands once for every thing in a list.

  • Every for loop needs a variable to refer to the thing it is currently operating on.

  • Use $name to expand a variable (i.e., get its value). ${name} can also be used.

  • Do not use spaces, quotes, or wildcard characters such as ‘*’ or ‘?’ in filenames, as it complicates variable expansion.

  • Give files consistent names that are easy to match with wildcard patterns to make it easy to select them for looping.

  • Use the up-arrow key to scroll up through previous commands to edit and repeat them.

  • Use Ctrl-R to search through the previously entered commands.

  • Use history to display recent commands, and !number to repeat a command by number.