DReferences

1.
Feynman, R. (1960). There’s plenty of room at the bottom: An invitation to enter a new field of physics. Caltech Eng Sci, 23(5), 22–36. Retrieved from https://resolver.caltech.edu/CaltechES:23.5.1960Bottom
2.
Fawcett, D. W. (1966). An Atlas of Fine Structure: The Cell, Its Organelles, and Inclusions. Philadelphia: W. B. Saunders Company.
3.
Dodge, J. D. (1968). An Atlas of Biological Ultrastructure. London: Edward Arnold.
4.
Darwin, C. (1888). The Life and Letters of Charles Darwin, Including An Autobiographical Chapter (Vol. 1). New York: D. Appleton.
5.
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res, 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239
6.
Claude, A. (1974). Nobel Lecture. Retrieved from https://nobelprize.org/prizes/medicine/1974/claude/lecture/
7.
Hill, M. A. Movie - Neutrophil chasing bacteria. Embryology. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria
8.
Berg, H. C. Swimming Escherichia coli. Bacterial motility and behavior. Retrieved from http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php
9.
Turner, L., Ryu, W. S., & Berg, H. C. (2000). Real-time imaging of fluorescent flagellar filaments. J Bacteriol, 182(10), 2793–2801. https://doi.org/10.1128/JB.182.10.2793-2801.2000
10.
Beeby, M., Ribardo, D. A., Brennan, C. A., Ruby, E. G., Jensen, G. J., & Hendrixson, D. R. (2016). Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A, 113(13), E1917–26. https://doi.org/10.1073/pnas.1518952113
11.
Johnson, S., Fong, Y. H., Deme, J. C., Furlong, E. J., Kuhlen, L., & Lea, S. M. (2020). Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation. Nat Microbiol, 5(7), 966–975. https://doi.org/10.1038/s41564-020-0703-3
12.
Xue, C., Lam, K. H., Zhang, H., Sun, K., Lee, S. H., Chen, X., & Au, S. W. N. (2018). Crystal structure of the FliF complex from Helicobacter pylori yields insight into the assembly of the motor MS ring in the bacterial flagellum. J. Biol. Chem., 293(6), 2066–2078. https://doi.org/10.1074/jbc.M117.797936
13.
Schlimpert, S., Klein, E. A., Briegel, A., Hughes, V., Kahnt, J., Bolte, K., … Thanbichler, M. (2012). General protein diffusion barriers create compartments within bacterial cells. Cell, 151(6), 1270–82. https://doi.org/10.1016/j.cell.2012.10.046
14.
Henderson, L. D., Matthews-Palmer, T. R. S., Gulbronson, C. J., Ribardo, D. A., Beeby, M., & Hendrixson, D. R. (2020). Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio, 11(1). https://doi.org/10.1128/mBio.02286-19
15.
Jensen, G. Getting Started in Cryo-EM. Video Lectures. Retrieved from cryo-em-course.caltech.edu
16.
Oikonomou, C. M., & Jensen, G. J. (2017). Cellular electron cryotomography: Toward structural biology in situ. Annu Rev Biochem, 86, 873–896. https://doi.org/10.1146/annurev-biochem-061516-044741
17.
Ruska, E. (1987). Nobel lecture. The development of the electron microscope and of electron microscopy. Biosci Rep, 7(8), 607–29. https://doi.org/10.1007/bf01127674
18.
Tsien, R. Y. (2005). Breeding molecules to spy on cells. In The Harvey Lectures: Series 99, 2003-2004. Harvey Society. Retrieved from http://tsienlab.ucsd.edu/Publications/Tsien%202006%20Harvey%20Lectures%20-%20Breeding%20Molecules%20to%20Spy.pdf
19.
Thomas, L. (1990). A Long Line of Cells: Collected Essays. New York: Book-of-the-Month-Club.
20.
Sobti, M., Smits, C., Wong, A. S., Ishmukhametov, R., Stock, D., Sandin, S., & Stewart, A. G. (2016). Cryo-EM structures of the autoinhibited E. Coli ATP synthase in three rotational states. eLife, 5, e21598. https://doi.org/10.7554/eLife.21598
21.
Kaledhonkar, S., Fu, Z., Caban, K., Li, W., Chen, B., Sun, M., … Frank, J. (2019). Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature, 570(7761), 400–404. https://doi.org/10.1038/s41586-019-1249-5
22.
Tang, X., Chang, S., Luo, Q., Zhang, Z., Qiao, W., Xu, C., … Dong, H. (2019). Cryo-EM structures of lipopolysaccharide transporter LptB 2 FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nat Commun, 10(1), 4175. https://doi.org/10.1038/s41467-019-11977-1
23.
Shu, W., Liu, J., Ji, H., & Lu, M. (2000). Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 Å resolution. J Mol Biol, 299(4), 1101–1112. https://doi.org/10.1006/jmbi.2000.3776
24.
Nguyen, L. T., Gumbart, J. C., Beeby, M., & Jensen, G. J. (2015). Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc Natl Acad Sci U S A, 112(28), E3689–98. https://doi.org/10.1073/pnas.1504281112
25.
Bharat, T. A. M., Kureisaite-Ciziene, D., Hardy, G. G., Yu, E. W., Devant, J. M., Hagen, W. J. H., … Lowe, J. (2017). Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat Microbiol, 2, 17059. https://doi.org/10.1038/nmicrobiol.2017.59
26.
Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biol, 3(1), 120143. https://doi.org/10.1098/rsob.120143
27.
Ptacin, J. L., & Shapiro, L. (2013). Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol, 15(1), 45–52. https://doi.org/10.1111/cmi.12049
28.
Sleytr, U. B., & Beveridge, T. J. (1999). Bacterial S-layers. Trends Microbiol, 7(6), 253–60. https://doi.org/10.1016/s0966-842x(99)01513-9
29.
Strahl, H., & Errington, J. (2017). Bacterial membranes: Structure, domains, and function. Annu Rev Microbiol. https://doi.org/10.1146/annurev-micro-102215-095630
30.
Young, K. D. (2006). The selective value of bacterial shape. Microbiol Mol Biol Rev, 70(3), 660–703. https://doi.org/10.1128/MMBR.00001-06
31.
Lynch, E. M., Hicks, D. R., Shepherd, M., Endrizzi, J. A., Maker, A., Hansen, J. M., … Kollman, J. M. (2017). Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol, 24(6), 507–514. https://doi.org/10.1038/nsmb.3407
32.
Deng, X., Gonzalez Llamazares, A., Wagstaff, J. M., Hale, V. L., Cannone, G., McLaughlin, S. H., … Löwe, J. (2019). The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity. Nat Microbiol, 4(12), 2357–2368. https://doi.org/10.1038/s41564-019-0544-0
33.
Barry, R. M., & Gitai, Z. (2011). Self-assembling enzymes and the origins of the cytoskeleton. Curr Opin Microbiol, 14(6), 704–11. https://doi.org/10.1016/j.mib.2011.09.015
34.
Pfeifer, F. (2012). Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol, 10(10), 705–15. https://doi.org/10.1038/nrmicro2834
35.
Pilhofer, M., & Jensen, G. J. (2013). The bacterial cytoskeleton: More than twisted filaments. Curr Opin Cell Biol, 25(1), 125–33. https://doi.org/10.1016/j.ceb.2012.10.019
36.
Alberts, B. (1998). The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell, 92(3), 291–4. https://doi.org/10.1016/s0092-8674(00)80922-8
37.
Ma, J., You, X., Sun, S., Wang, X., Qin, S., & Sui, S.-F. (2020). Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature, 579(7797), 146–151. https://doi.org/10.1038/s41586-020-2020-7
38.
Pony, P., Rapisarda, C., Terradot, L., Marza, E., & Fronzes, R. (2020). Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation. Nat Commun, 11(1), 1426. https://doi.org/10.1038/s41467-020-15214-y
39.
Sutter, M., Boehringer, D., Gutmann, S., Gunther, S., Prangishvili, D., Loessner, M. J., … Ban, N. (2008). Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol, 15(9), 939–47. https://doi.org/10.1038/nsmb.1473
40.
Oltrogge, L. M., Chaijarasphong, T., Chen, A. W., Bolin, E. R., Marqusee, S., & Savage, D. F. (2020). Multivalent interactions between CsoS2 and Rubisco mediate \alpha-carboxysome formation. Nat Struct Mol Biol, 27(3), 281–287. https://doi.org/10.1038/s41594-020-0387-7
41.
Hoppert, M., & Mayer, F. (1999). Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys, 31(3), 247–284. https://doi.org/10.1007/BF02738242
42.
Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F., & Sutter, M. (2018). Bacterial microcompartments. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro.2018.10
43.
Oostergetel, G. T., van Amerongen, H., & Boekema, E. J. (2010). The chlorosome: A prototype for efficient light harvesting in photosynthesis. Photosynth Res, 104(2-3), 245–55. https://doi.org/10.1007/s11120-010-9533-0
44.
Jacob, F. (2002). Inaugural lecture, Chair of Cellular Genetics, Collége de France, delivered Friday May 7, 1965. In Travaux Scientifiques de François Jacob. Paris: Éditions Odile Jacob.
45.
Wagstaff, J. M., Tsim, M., Oliva, M. A., García-Sanchez, A., Kureisaite-Ciziene, D., Andreu, J. M., & Löwe, J. (2017). A polymerization-associated structural switch in FtsZ that enables treadmilling of model filaments. mBio, 8(3). https://doi.org/10.1128/mBio.00254-17
46.
Badrinarayanan, A., Le, T. B., & Laub, M. T. (2015). Bacterial chromosome organization and segregation. Annu Rev Cell Dev Biol, 31, 171–99. https://doi.org/10.1146/annurev-cellbio-100814-125211
47.
Hirsch, P. (1974). Budding bacteria. Annu Rev Microbiol, 28(0), 391–444. https://doi.org/10.1146/annurev.mi.28.100174.002135
48.
Laloux, G., & Jacobs-Wagner, C. (2014). How do bacteria localize proteins to the cell pole? J Cell Sci, 127(Pt 1), 11–9. https://doi.org/10.1242/jcs.138628
49.
Reyes-Lamothe, R., Nicolas, E., & Sherratt, D. J. (2012). Chromosome replication and segregation in bacteria. Annu Rev Genet, 46, 121–43. https://doi.org/10.1146/annurev-genet-110711-155421
50.
Berg, H. C. (1988). A physicist looks at bacterial chemotaxis. Cold Spring Harb Symp Quant Biol, 53 Pt 1, 1–9. https://doi.org/10.1101/sqb.1988.053.01.003
51.
Wang, F., Burrage, A. M., Postel, S., Clark, R. E., Orlova, A., Sundberg, E. J., … Egelman, E. H. (2017). A structural model of flagellar filament switching across multiple bacterial species. Nat Commun, 8(1), 960. https://doi.org/10.1038/s41467-017-01075-5
52.
Murphy, G. E., Leadbetter, J. R., & Jensen, G. J. (2006). In situ structure of the complete Treponema primitia flagellar motor. Nature, 442(7106), 1062–4. https://doi.org/10.1038/nature05015
53.
Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson, D. R., Briegel, A., … Jensen, G. J. (2011). Structural diversity of bacterial flagellar motors. EMBO J, 30(14), 2972–81. https://doi.org/10.1038/emboj.2011.186
54.
Zhao, X., Norris, S. J., & Liu, J. (2014). Molecular architecture of the bacterial flagellar motor in cells. Biochemistry, 53(27), 4323–33. https://doi.org/10.1021/bi500059y
55.
Qin, Z., Lin, W., Zhu, S., Franco, A. T., & Liu, J. (2017). Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography. J Bacteriol, 199(3). https://doi.org/10.1128/JB.00695-16
56.
Chaban, B., Coleman, I., & Beeby, M. (2018). Evolution of higher torque in Campylobacter- type bacterial flagellar motors. Sci Rep, 8(1), 97. https://doi.org/10.1038/s41598-017-18115-1
57.
Kaplan, M., Ghosal, D., Subramanian, P., Oikonomou, C. M., Kjaer, A., Pirbadian, S., … Jensen, G. J. (2019). The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type. eLife, 8, e43487. https://doi.org/10.7554/eLife.43487
58.
Ferreira, J. L., Gao, F. Z., Rossmann, F. M., Nans, A., Brenzinger, S., Hosseini, R., … Beeby, M. (2019). \gamma-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol, 17(3), e3000165. https://doi.org/10.1371/journal.pbio.3000165
59.
Chang, Y., Moon, K. H., Zhao, X., Norris, S. J., Motaleb, M. A., & Liu, J. (2019). Structural insights into flagellar stator-rotor interactions. eLife, 8, e48979. https://doi.org/10.7554/eLife.48979
60.
Poweleit, N., Ge, P., Nguyen, H. H., Loo, R. R. O., Gunsalus, R. P., & Zhou, Z. H. (2016). CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat Microbiol, 2(3), 1–12. https://doi.org/10.1038/nmicrobiol.2016.222
61.
Chang, Y. W., Rettberg, L. A., Treuner-Lange, A., Iwasa, J., Sogaard-Andersen, L., & Jensen, G. J. (2016). Architecture of the type IVa pilus machine. Science, 351(6278), aad2001. https://doi.org/10.1126/science.aad2001
62.
Albers, S.-V., & Jarrell, K. F. (2018). The archaellum: An update on the unique archaeal motility structure. Trends Microbiol, 26(4), 351–362. https://doi.org/10.1016/j.tim.2018.01.004
63.
Armbruster, C. E., & Mobley, H. L. T. (2012). Merging mythology and morphology: The multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 10(11), 743–754. https://doi.org/10.1038/nrmicro2890
64.
Berg, H. C. (2003). The rotary motor of bacterial flagella. Annu Rev Biochem, 72(1), 19–54. https://doi.org/10.1146/annurev.biochem.72.121801.161737
65.
Jarrell, K. F., & McBride, M. J. (2008). The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol, 6(6), 466–76. https://doi.org/10.1038/nrmicro1900
66.
Muñoz-Dorado, J., Marcos-Torres, F. J., García-Bravo, E., Moraleda-Muñoz, A., & Pérez, J. (2016). Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol, 7, 781. https://doi.org/10.3389/fmicb.2016.00781
67.
Shrivastava, A., & Berg, H. C. (2015). Towards a model for Flavobacterium gliding. Curr Opin Microbiol, 28, 93–97. https://doi.org/10.1016/j.mib.2015.07.018
68.
Park, S.-Y., Borbat, P. P., Gonzalez-Bonet, G., Bhatnagar, J., Pollard, A. M., Freed, J. H., … Crane, B. R. (2006). Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol, 13(5), 400–407. https://doi.org/10.1038/nsmb1085
69.
Cassidy, C. K., Himes, B. A., Sun, D., Ma, J., Zhao, G., Parkinson, J. S., … Zhang, P. (2020). Structure and dynamics of the E. Coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun Biol, 3(1), 1–10. https://doi.org/10.1038/s42003-019-0748-0
70.
Bergeron, J. R., Hutto, R., Ozyamak, E., Hom, N., Hansen, J., Draper, O., … Kollman, J. M. (2017). Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci, 26(1), 93–102. https://doi.org/10.1002/pro.2979
71.
Hazelbauer, G. L., Falke, J. J., & Parkinson, J. S. (2008). Bacterial chemoreceptors: High-performance signaling in networked arrays. Trends Biochem Sci, 33(1), 9–19. https://doi.org/10.1016/j.tibs.2007.09.014
72.
Lower, B. H., & Bazylinski, D. A. (2013). The bacterial magnetosome: A unique prokaryotic organelle. J Mol Microb Biotech, 23(1-2), 63–80. https://doi.org/10.1159/000346543
73.
Schuergers, N., Lenn, T., Kampmann, R., Meissner, M. V., Esteves, T., Temerinac-Ott, M., … Wilde, A. (2016). Cyanobacteria use micro-optics to sense light direction. Elife, 5. https://doi.org/10.7554/eLife.12620
74.
Postgate, J. R. (1994). The Outer Reaches of Life. Cambridge: Cambridge University Press.
75.
Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F., & Stan-Lotter, H. (2006). Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol, 5(2-3), 203–218. https://doi.org/10.1007/s11157-006-0007-y
76.
Pletnev, P., Osterman, I., Sergiev, P., Bogdanov, A., & Dontsova, O. (2015). Survival guide: Escherichia coli in the stationary phase. Acta Naturae, 7(4), 22–33. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717247/
77.
Tocheva, E. I., Ortega, D. R., & Jensen, G. J. (2016). Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol, 14(8), 535–542. https://doi.org/10.1038/nrmicro.2016.85
78.
Vreeland, R. H., Rosenzweig, W. D., & Powers, D. W. (2000). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407(6806), 897–900. https://doi.org/10.1038/35038060
79.
Thomas, L. (1974). The Lives of a Cell. New York: The Viking Press.
80.
Ghosal, D., Kim, K. W., Zheng, H., Kaplan, M., Truchan, H. K., Lopez, A. E., … Jensen, G. J. (2019). In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat Microbiol, 4(12), 2101–2108. https://doi.org/10.1038/s41564-019-0603-6
81.
Ghosal, D., Jeong, K. C., Chang, Y.-W., Gyore, J., Teng, L., Gardner, A., … Jensen, G. J. (2019). Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol, 4(7), 1173–1182. https://doi.org/10.1038/s41564-019-0427-4
82.
Tachiyama, S., Chang, Y., Muthuramalingam, M., Hu, B., Barta, M. L., Picking, W. L., … Picking, W. D. (2019). The cytoplasmic domain of MxiG interacts with MxiK and directs assembly of the sorting platform in the Shigella type III secretion system. J Biol Chem, 294(50), 19184–19196. https://doi.org/10.1074/jbc.RA119.009125
83.
Yan, Z., Yin, M., Xu, D., Zhu, Y., & Li, X. (2017). Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol, 24(2), 177–183. https://doi.org/10.1038/nsmb.3350
84.
Ruhe, Z. C., Subramanian, P., Song, K., Nguyen, J. Y., Stevens, T. A., Low, D. A., … Hayes, C. S. (2018). Programmed secretion arrest and receptor-triggered toxin export during antibacterial contact-dependent growth inhibition. Cell, 175(4), 921–933.e14. https://doi.org/10.1016/j.cell.2018.10.033
85.
Chang, Y. W., Rettberg, L. A., Ortega, D. R., & Jensen, G. J. (2017). In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep, 18(7), 1090–1099. https://doi.org/10.15252/embr.201744072
86.
Shikuma, N. J., Pilhofer, M., Weiss, G. L., Hadfield, M. G., Jensen, G. J., & Newman, D. K. (2014). Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science, 343(6170), 529–33. https://doi.org/10.1126/science.1246794
87.
Christie, P. J. (2019). The Rich Tapestry of Bacterial Protein Translocation Systems. Protein J, 38(4), 389–408. https://doi.org/10.1007/s10930-019-09862-3
88.
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nat Rev Microbiol, 14(9), 563–75. https://doi.org/10.1038/nrmicro.2016.94
89.
Patz, S., Becker, Y., Richert-Pöggeler, K. R., Berger, B., Ruppel, S., Huson, D. H., & Becker, M. (2019). Phage tail-like particles are versatile bacterial nanomachines. J Adv Res, 19, 75–84. https://doi.org/10.1016/j.jare.2019.04.003
90.
Sockett, R. E. (2009). Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol, 63, 523–39. https://doi.org/10.1146/annurev.micro.091208.073346
91.
Rohwer, F., Youle, M., Maughan, H., & Hisakawa, N. (2014). Life in Our Phage World. San Diego, CA: Wholon. Retrieved from http://2015phage.org/art.php
92.
Veesler, D., Ng, T.-S., Sendamarai, A. K., Eilers, B. J., Lawrence, C. M., Lok, S.-M., … Fu, C. (2013). Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci USA, 110(14), 5504–5509. https://doi.org/10.1073/pnas.1300601110
93.
Keen, E. C. (2015). A century of phage research: Bacteriophages and the shaping of modern biology. Bioessays, 37(1), 6–9. https://doi.org/10.1002/bies.201400152
94.
Prangishvili, D., Bamford, D. H., Forterre, P., Iranzo, J., Koonin, E. V., & Krupovic, M. (2017). The enigmatic archaeal virosphere. Nat Rev Microbiol, 15(12), 724–739. https://doi.org/10.1038/nrmicro.2017.125
95.
Goodsell, D. S. (2009). Escherichia coli. Biochem Mol Biol Educ, 37(6), 325–32. https://doi.org/10.1002/bmb.20345
96.
Dobro, M. J., Oikonomou, C. M., Piper, A., Cohen, J., Guo, K., Jensen, T., … Jensen, G. J. (2017). Uncharacterized Bacterial Structures Revealed by Electron Cryotomography. J Bacteriol, 199(17). https://doi.org/10.1128/JB.00100-17